Iterative Reconstruction Algorithm

- Group C -

2015. 12. 30

Juyoung Lee

Bio Imaging and Signal Processing Lab.

Department of Bio and Brain Engineering, KAIST

Soomin Jeon

Computational Mathematics and Imaging Lab. Department of Mathematical Sciences, KAIST

Fusion Study

Modality – MRI / CT
 What is iterative reconstruction algorithm?
 Application

MRI machine and image

Figure 7-10 Computer tomography

CT machine and image

Iterative Algorithm

$$y = Ax$$

A : Modality mapping matrix x : Image y : Measurement

Set initial guess x₀
 Find new approximation x_{new} from x_{old}
 Repeat 2)

Medical Image Reconstruction

FBP (Filtered back projection)

KAIST

Reconstruction Algorithm

• Sometimes, analytical method is inadequate.

MRI	СТ
 Non-cartesian sampling patterns Non-Fourier physical effects Nonlinear magnetic fields Deliberate undersampling to reduce scan times 	 Metal artifacts Noise reduction Sparse view Low dose

Iterative reconstruction methods!

Applications (1) MRI

MRI Field inhomogeneity artifact

Object

Field map

Uncorrected image

Applications (1) MRI

(a) Uncorrected(b) Conjugate phase(c) Fast iterative(d) Field map (Hz)

Applications (2) CT

Metal Artifact Reduction (MAR) is one of the hot issues in X-ray CT

Applications (2) CT

Applications (2) CT: simulation result

Max error: 0.23636 L2 error: 0.05308

Max error: 0.07180 L2 error: 0.01205

Applications (2) CT: simulation result

Max error: 0.74819 L2 error: 0.08764

Max error: 0.08981 L2 error: 0.01308

Conclusions

- Iterative method can resolve the limit of direct method.
- Iterative method can be applied to many medical image modality.
- Iterative method can be designed for its own purpose.

	MRI	СТ	Others
Updated variable	k-space data	Sinogram data	Measurements Parameter
Purpose	Field inhomogeneity Non-cartesian pattern	Missing data due to metal Low-dose	Various problems

Thank you!

Algorithm: MRI

• Need: field map information k-space trajectory sample density

