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Medical images and size… 

 Explosion of medical data 
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20%-40% 
Annual increase in 

medical image archives 

120MB - Mammograms 

2.6GB - 3D mammograms (tomosynthesis) 

W. Raghupathi and V. Raghupathi, “Big data analyrics in healthcare: promise and potential”, Health Information Science and System, 2014. 

SAP's Amit Sinha, “Big data's challenges and solutions towards producing real-time personalized medicine”, Strata Rx 2013 conference 

How can  handle the big 

data? 
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Year 

Expectation for growth of  health care data in U.S. 

150 exabytes in 2011 

1,600 exabytes  

( 1.6 zettabytes) in 2020 

* 1 exabyte (EB)  

= 106 terabytes (TB) 

3D mammograms 

2457 

1847 

65 

* Portion of medical image: about 80% 

4(98+563) = 2.6 GB (4 volumes per patient) 

2048 

1664 

15 

Projection views 

2048 x 1664 x 15 x 2 bytes = 98 MB 

Reconstructed slices 

2457 x 1847 x 65 x 2 bytes = 563 MB 



Cancer diagnosis with medical images 

 General procedure for breast cancer screening 

  

 

Mammography 

Additional 
imaging: breast 
ultrasonography 

or MRI, etc. 

Uncertain case 

Biopsy or follow 
up study 

E. Warner “Breast cancer screening,” The New England Journal of Medicine, 2011 

“Breast Cancer Screening - Thermography is Not an Alternative to Mammography: FDA Safety Communication”, U.S. Food and Drug Administration, 2011 

[1] “GLOBOCAN 2012: Estimated cancer incidence, mortality and prevalence worldwide in 2012,” WHO (world health organization), 2012 

MRI Breast 

ultrasonography 

Mammography 
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Breast cancer is the most cause of  

cancer related death on woman [1] 

Highly 
suspicious case 

Second reading First reading 

Computer aided detection (CAD) 

can replace the second reader 

Increasing throughput and 

effectiveness of  the screening 

* Double reading, which is 

standard practice in the UK, 

significantly improves the 

sensitivity and specificity 



Computer-aided detection via visual recognition 
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Feature space 
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Example of  sparse representation based classification 

A test mass image 

Sparse representation 

Apparent spiculated patterns Subtle spiculated patterns 

ClassificationInput image

 

Preprocessing ROI detection
Feature

extraction

(a) Input mammogram (b) Preprocessed

mammogram

(c) Detected ROI 

candidates

(d) Final result 

to be displayed

Detected ROI 

candidates

ROI classified

 as a mass

Decision

Normal tissue

(negative class)

Mass

(positive class)

A general framework of  CAD  



Image pattern of breast cancer in mammogram 

 Mass 

 Appeared more densely (brighter) than the 

surrounding tissues 

 Breast masses present various margin types [1] 

 Microcalcification 

 Cluster of bright and small points 

 100 mm – 1mm size (1.5 – 15 pixels in 70 mm 

mammogram image) 

 

 

Circumscribed Ill-defined 

Spiculated Obscured Micro-lobulated 

Examples of  various margins of  breast mass 
[1] Sylvia Heywang-Koebrunner, Ingrid Schreer, “Diagnostic breast imaging, second edition,” in Thieme, 2001. 

Examples of  microcalcification 

7/31 



Modality for breast cancer screening 

 History 

Film mammography (1967)  Digital mammography (early 1990s-current) 

3D digital breast tomosynthesis (DBT) (2011-developing) 
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Kontos, D. et al (2009): “Parenchymal Texture Analysis in Digital Breast Tomosynthesis for Breast Cancer Risk Estimation: A Preliminary Study”; Acad Radiol; v.16:283:298. 

Video clips from University Hospitals (http://www.youtube.com/watch?v=InD5qpxTJgA) 

Examples of  DBT data acquisition and  

breast cancer screening using DBT 

15° 

        

 
Reconstruction 

algorithm 

An illustrative example of  (a) DBT acquisition geometry with (b) the projection views 

(15 images) acquired by the DBT (c) the reconstructed slices (50~80 images) 

(b) (c)  (a) 



2D DM vs. 3D DBT 

 DBT could reduce tissue overlap in Digital Mammography (DM) 

 DBT clearly shows breast cancers 
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2D DM 3D DBT 2D DM 3D DBT 

Microcalcification Mass 



Clinical reports: 2D vs. 2D+3D 

 Advantages on screening using 2D DM + 3D DBT  

 

 

From Hologic Selenia Dimensions 3D System Sponsor Executive Summary  
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1) US Food and Drug Administration. Selenia Dimensions 3D 

System— P080003, Feb., 11, 2011.  

 The DBT in combination with digital 

mammography is approved by the 

Food and Drug Administration 

(FDA)1) 



Image pattern of DBT reconstructed slices and projection views 

 More data and information 

 projection views (PVs)  + reconstructed slices (RSs) : 
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Mass on RSs Mass on PVs MC on RSs MC on PVs 



Limitations of DBT  

 PV images are  noisy due to the low dose imaging 

 

 

 

 RS images have reconstruction artifact (blur) 

 Due to the limited angular range of projection views, different voxel size 
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voxel 

0.1mm 
0.1mm 

1-3mm 

DBT reconstructed slices 
Image resolution is highly different between XY 

plane and YZ or XZ plane 

x 

y 

z 

y 



Limitations of DBT  

 Reconstruction artifact (blur) 
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Mass  

MC 

In-focus slice 
Out-of-focus slice Reconstructed slices 

S. T. Kim, D. H. Kim, Y. M. Ro, “Breast mass detection using slice conspicuity in 3D reconstructed digital breast volumes,” Physics in Medicine and Biology, 2014. 

Reconstruction 

artifact (blur) 

occurred 

x 

y 

x 

y 



 Novelty : limitations reduction and maximum use of  information from  both PV and RS 

15 projection views  50~80 reconstructed slices 

CAD system 
 Utilizing both projection 

and reconstruction data 

High performance DBT CAD developed by IVY lab 
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CAD system 

 

 

 

 

 

 

 

Detection breast cancers on 

projection views 

Detection breast cancers on 

reconstructed slices 

 Low-dose and noisy condition 

 Need for enhancement technique 

 Correlation between projection views 

 Developing a new feature 

Raw PVs Enhanced PVs 

W.J. Baddar, D. H. Kim, E.J. Kim, Y. M. Ro, “Utilizing digital breast 

tomosynthesis projection views correlation for microcalcification 

enhancement for detection purposes,” to be presented at SPIE MI, 2015 

 Reconstruction artifact due to the 

limited number of  view 

 Need for extracting features by 

mitigrating the blur effect 

 

 How to effectively combining the results? 

 Developing a ensemble classifier-based combination  

 

Input image 

Preprocessing 

ROI detection 

Feature  
extraction 

Classification 

Decision 



Blur-free mass feature extraction for DBT CAD 

 Mass feature extraction in in-focus slice found automatically  

 Finding in-focus slice automatically (Object borders in the in-focus plane are sharp) 

 Feature extraction in estimated in-focus slice 
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S. T. Kim, D. H. Kim, Y. M. Ro, “Breast mass detection using slice conspicuity in 3D reconstructed digital breast volumes,” Physics in Medicine and Biology, 2014. 

Classification ROC curve 
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Proposed features from conspicuous slices

Conventional features 

The proposed feature 

extraction improves mass 

classification performance on 

DBT reconstructed slices 
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Illustration for new feature extraction in in-focus slices 

Estimated  

in-focus slices 

Proposed feature extraction: 
Extracting features from in-focus slices only 

 Morphology and texture features 

Blurred slices 

90% of 

peak value 

Conventional feature extraction: 
Averaging features from all slices 



New MC feature extraction for DBT CAD 

 MC feature extraction from maximum value tracing images 
 Improves MC visibility compared with blurred MCs, thus feature can better describe MCs 

 The MC cluster structure can be easily shown and kept intact in the traced images 
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Tracing the VOI of the DBT in 3 Dimensions 

 

Z 

X 

Y 

 

VOI from the DBT volume 

Tracing 

direction 

Extracting texture 

features describing 

relation with 

surrounding tissue  

Extracting texture 

features describing 

MC cluster  structure 

and distribution  



New MC feature extraction for DBT CAD 
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E.J. Kim, D.H. Kim, E.S. Cha, and Y.M. Ro. "Improvement of subtle microcalcifications detection in DBT slices." In 

Biomedical and Health Informatics (BHI), 2014 IEEE-EMBS International Conference on, pp. 322-325. IEEE, 2014. 

The proposed feature extraction improves MC classification performance 

on DBT reconstructed slices 

Classification FROC curve 
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3 directional maximum ray-tracing features

Conventional 3D features 



 

New mass feature in PVs 

 Consistent similarity between projection views: Utilizing different 

characteristics of masses and FPs on PVs 
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Mass shows higher inter-view 

similarities compared to FP 

D. H. Kim, S. T. Kim, Y. M. Ro, “Feature extraction from inter-view similarity of DBT projection views,” SPIE Medical Imaging, 2015 

[1] J. Y. Choi and Y. M. Ro, "Multiresolution local binary pattern texture analysis combined with variable selection for application to false positive reduction in computer-

aided detection of breast masses on mammograms," Physics in Medicine and Biology, vol 57, no. 2, pp. 7029-7052, October 2012 

The concatenated features (multi-resolution 

LBP features [1] and proposed features ) 

further improved AUC performance 

Proposed feature shows high AUC 

with small number of  features 

Inter-view similarity of  FP 

Mass enhanced PVs 

FP ROI 

Inter-view similarity of  mass 

Mass enhanced PVs 

Mass ROI 

0.7267

0.5643

0.6928

0.6006

0.7092 0.7154
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(354)

RLS
(20)
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(52)

GLDS
(96)

NRL
(5)

Proposed
(8)

Proposed+
LBP
(362)

Area under the RUC curve (AUC)
* Higher AUC means better 
classification performance



Maximum use of  information from  both PV and RS 

for High performance DBT CAD lab 

 New ensemble classification for mass CAD fusing RSs and PVs 

 Characteristics of lesion are different in RSs and PVs 

 Multiple classifiers with feature selection is needed to classify complex data 
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D. H. Kim, S. T. Kim, Y. M. Ro, “Improving mass detection using combined features from projection views and reconstructed volume of DBT and boosting based 

classification with feature selection,” submitted to Physics in Medicine and Biology, 2014 

Positive class 
Masses with  

various margins 

Negative class 
Normal tissues 

Weak classifier with 

selected feature fi 

f1 

f2 

fi 

Strong 

classifier 

Ensemble classification based on boosting 

(training and testing) 

Training

Training VOIs

Classification using 

base classifier 1

Classification using 

base classifier k

Weighted decision fusion

3D mass detection 

results

Classification with ensemble classifiers

…
Classifier ensemble 

generation

Ensemble classifier

(k classifiers)

Extracting all features 

on RSs and PVs

Testing VOIs

Extracting selected 

features on RSs and PVs

Information of 

selected features

Testing



Maximum use of  information from  both PV and RS 

for High performance DBT CAD lab 

 New ensemble classification for mass CAD fusing RSs and PVs 
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80% of  selected features 

Dominant features are extracted 

from both on PVs and RSs 

Selected features in the boosting framework 

D. H. Kim, S. T. Kim, Y. M. Ro, “Improving mass detection using combined 

features from projection views and reconstructed volume of DBT and boosting 

based classification with feature selection,” submitted to Physics in Medicine and 

Biology, 2014 

0

5

10

15

20

25

P
er

ce
n

ta
g
e
 o

f 
ti

m
es

 s
e
le

ct
ed

 (
%

) 

Feature name

Reconstructed slices 

Projection views 

0 0.5 1 1.5 2 2.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False positives per breast volume

S
en

si
ti

v
it

y
 (

%
)

 

 

PVs (2D)

RSs (3D)

PVs+RSs (2D+3D)

Classification FROC curve 

Maximum improvement of  

sensitivity is about 15% with the 

combination of  2D and 3D data 

ROC curves for clinical study 

Maximum improvement of  

sensitivity is about 18% with the 

combination of  2D and 3D data 



Multiview analysis 

 Clinical practice 

 Radiologists analyze the ipsilateral views to detect cancers and to reduce FPs 

 Matching corresponding regions in the ipsilateral DBT views is important  
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Mass have similar features 

in CC and MLO view 

Right CC view RSs Right MLO view RSs Ipsilateral views 

CC view 



Multiview analysis: Region matching in ipsilateral DBT views 
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Accuracy of  the proposed region matching method and 

breast compression model-based region matching method 

Geometry-based 

matching 

Feature (Local structure)-

based search 

S. T. Kim, D. H. Kim, D. J. Ji, and Y. M. Ro, “Region Matching based on local structure information in ipsilateral digital breast tomosynthesis views,” to be presented at IEEE 

ICIP, 2015 

[2] G. Van Schie, C. Tanner, P. Snoeren, M. Samulski, K. Leifland, M. G. Wallis, et al., "Correlating locations in ipsilateral breast tomosynthesis views using an analytical 

hemispherical compression model," Physics in Medicine and Biology, vol. 56, p. 4715, 2011. 

MLO view 

compressed breast 
Uncompressed breast 

Detector 

CC view  

compressed breast 

Decompress  

in MLO direction 

Compress  

in CC direction 

Compression plate 

Geometry-based matching 
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Proposed region matching method

Geometry-based region matching method [2]

Left CC view RSs Left MLO view RSs  



Multiview analysis: New bilateral mass features in DBT RSs 

 Bilateral features from asymmetric density of masses between the left 

and right breasts 
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Left CC view RSs  

with detected VOIs 

True mass shows 

large asymmetry 

Right CC view RSs 

with corresponding VOIs 
(VOIs in left breast are 

transformed into right breast) 

Area under the ROC curve (AUC) 

Proposed bilateral features improve overall AUCs 

compared to the AUCs with single-view feature only 

D. H. Kim, S. T. Kim, Wissam J. Baddar, Y. M. Ro, “Feature extraction from bilateral dissimilarity in DBT reconstructed volume,” to be presented at IEEE ICIP, 2015 

[1] J. Y. Choi and Y. M. Ro, "Multiresolution local binary pattern texture analysis combined with variable selection for application to false positive reduction in computer-aided 

detection of breast masses on mammograms," Physics in Medicine and Biology, vol 57, no. 2, pp. 7029-7052, October 2012 
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Synthetic mammogram: Solution for dose rate 

 Currently, as approved by the U. S. Food and Drug Administrator (FDA), 

DBT should be used in combination with DM [3]. 

 Drawback of combination with DM 

 DBT with DM accompanies doubled dose rate and shooting time in screening. 

 Solution: Synthetic mammogram (Proposed method: Conspicuity-based 

projection) 
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S. T. Kim, D. H. Kim, and Y. M. Ro, “Generation of Conspicuity-improved Synthetic Image from Digital Breast Tomosynthesis” Intenrational Conference on Digital Signal Processing, 2014 

[3] M. L. Zuley, et al., Radiology, pp. 131530, 2014. 

[4] F. Diekmann et al., “Thick slices from tomosynthesis data sets: phantom study for the evaluation of different algoruthms,” Journal of Digital Imaging, 2009. 

Proposed method Maximum intensity projection[4] Proposed method Maximum intensity projection[4] 



Combination CAD using DBT and synthetic mammogram  

 Complementary information between synthetic mammogram and 

DBT RSs 
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Combined approach

DBT volume

Synthetic mammogram

DBT and synthetic mammogram have complementary information 

DBT RSs Synthetic mammogram 

S. T. Kim, D. H. Kim, and Y. M. Ro, “Combination of conspicuity improved synthetic mammograms and digital breast tomosynthesis: a promising approach for mass 

detection” SPIE Medical Imaging, 2015 



 KAIST DBT CAD System Video 

 

ivylab.kaist.ac.kr   
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