Noninvasive Blood Flow Mapping with Arterial Spin Labeling (ASL)

Paul Kyu Han and Sung-Hong Park

Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea

MRI Laboratory at KAIST

Korea Advanced Institute of Science and Technology

Contents

Development History

Introduction

• Arterial spin labeling (ASL) is a recent magnetic resonance imaging (MRI) technique that allows for noninvasive measurement of blood flow.

• The technique employs specially prepared radio-frequency (RF) pulses to magnetically label arterial blood water prior to data acquisition.

• Various technical advancements have been made in the past for ASL.

• ASL is a popular MRI technique with growing field of interest in both research and clinical applications.

Arterial Spin Labeling (ASL)

- MRI methods for measuring blood flow
 - Injection of Contrast Agent
 - Arterial Spin Labeling (ASL)
- ASL applies radio-frequency (RF) pulses to invert magnetization of arterial blood water
 - Acquisition of one image with inverted magnetization in arterial blood water (Label)
 - Acquisition of another image with no inverted magnetization in arterial blood water (Control)
 - Perfusion map acquired by subtraction (Control Label)

FIG 1. Schematic Diagram of ASL Acquisition and Labeling of Arterial Blood Water

Introduction	Theory	History	New Approaches	Conclusion
	•			

Magnetization Transfer (MT) Effects in ASL

- Application of labeling pulses causes off-resonance saturation, i.e., magnetization transfer (MT)
 - MT effects are not symmetric around water resonance frequency
- MT effect causes measurement errors in ASL
 - Potentially problematic for subtraction from control
 - Signal-to-noise ratio reduction
 - Suppression of MT effects important for ASL

Arterial Spin Labeling (ASL)

- Three main categories based on labeling scheme:
 - Continuous ASL (CASL)
 - Pulsed ASL (PASL)
 - Pseudo-Continuous ASL (pCASL)

FIG 2. Schematic Diagram of ASL Pulse Sequence

FIG 3. Example Brain Slice Image of Control, Label, and Perfusion Map

Introduction	Theory	History	New Approaches	Conclusion

Pulsed ASL (PASL)

- Application of instantaneous RF pulse as labeling
 - RF pulse typically 10-20 ms duration
 - High tagging efficiency
 - Largely insensitive to blood flow variations

- FAIR
- EPISTAR
- PICORE

Golay et al., 1997 [2]

7

Introduction

Theory

New Approaches

Continuous ASL (CASL)

- Application of continuous RF pulse as labeling
 - RF pulses with 1-2 second duration
 - Longer duration of labeling provides higher SNR
 - Application of long RF pulse limited in many commercial scanners

Single Slice

Williams et al., 1992 [3]

Multiple Slice

Alsop et al., 1998 [4]

Introduction	Theory	History	New Approaches	Conclusion
--------------	--------	---------	----------------	------------

Pseudo-Continuous ASL (pCASL)

Application of train of multiple short RF pulses as labeling

Unbalanced

- Developed to take advantage of both PASL and CASL
- High tagging efficiency
- High SNR
- Variations

Balanced

- "Balanced" Gradient Method
- "Unbalanced" Gradient Method

Different Readout Schemes

- Fast data readout scheme preferred due to typically long duration of labeling in ASL
 - Echo planar imaging (EPI) typically used since fastest acquisition method in MRI (e.g. ~0.1s/image)
 - EPI susceptible to magnetic field inhomogeneity and image distortions
- Recently, non-EPI readout schemes have been applied to ASL
 - Rapid Acquisition with Refocused Echoes (RARE)
 - GRadient- And Spin Echo (GRASE)
 - Balanced Steady-State Free Precession (bSSFP)

	Introduction	Theory	History	New Approaches	Conclusion
--	--------------	--------	---------	----------------	------------

3D pCASL-bSSFP: Preliminary Results

- Advancement of pCASL-bSSFP for 3D acquisition
 - Long labeling duration required in ASL
 - 3D acquisition to increase efficiency

Theory

Introduction

FIG 5. Example Baseline and Perfusion Images of 3D pCASL-bSSFP (4 Slice)

History

New Approaches Conclusion

pCASL-bSSFP with Compressed Sensing (CS)

- Combination of pCASL-bSSFP with CS to increase spatial coverage
- CS Problem Formation:
- $\min_{x} \{ \|Ax b\|^2 + \lambda \|x\|_1 \}$
- where x: x-f domain information and Ax, b: k-t domain information
- Exploits temporal redundancy for reconstruction of perfusion information

FIG 6. Retrospective Down-Sampling Results for 2D pCASL-bSSFP

Introduction	Theory	History	New Approaches	Conclusion

ALADDIN

- Alternate Ascending/Descending Directional Navigation (ALADDIN) •
 - Usage of 2D inter-slice blood flow and MT effects •
 - Allows for simultaneous acquisition of perfusion, MT asymmetry imaging •
 - Separation of perfusion and MT signals via combination of different datasets ۲

ALADDIN

Introduction

Acquisition Order and Timing Parameters

Theory

History

New Approaches

Conclusion

Introduction

- ASL is a noninvasive MRI technique that allows for measurement of blood perfusion via magnetic labeling of arterial blood water.
- ASL is categorized into three main categories depending on labeling scheme: PASL, CASL, and pCASL.
- Various data readout schemes have been developed for ASL.

Theory

- New developments are being made to improve the technique in various aspects.
- ASL is a promising tool for clinical diagnosis as a substitute for contrast-agent based perfusion imaging.

History

New Approaches

THANK YOU FOR YOUR ATTENTION!

References

[1] Wong, Eric C., Richard B. Buxton, and Lawrence R. Frank. "Implementation of quantitative perfusion imaging techniques for functional brain mapping using pulsed arterial spin labeling." *NMR in Biomedicine* 10.45 (1997): 237-249.

[2] Golay, Xavier, et al. "Transfer insensitive labeling technique (TILT): application to multislice functional perfusion imaging." *Journal of Magnetic Resonance Imaging* 9.3 (1999): 454-461.

[3] Williams, Donald S., et al. "Magnetic resonance imaging of perfusion using spin inversion of arterial water." *Proceedings of the National Academy of Sciences* 89.1 (1992): 212-216.

[4] Alsop, David C., and John A. Detre. "Multisection cerebral blood flow MR imaging with continuous arterial spin labeling." *Radiology* 208.2 (1998): 410-416.

[5] Wu, Wen-Chau, et al. "A theoretical and experimental investigation of the tagging efficiency of pseudocontinuous arterial spin labeling." *Magnetic Resonance in Medicine* 58.5 (2007): 1020-1027.

[6] Dai, Weiying, et al. "Continuous flow-driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields." *Magnetic Resonance in Medicine* 60.6 (2008): 1488-1497.

[7] IMAIOS. Web. 10 July. 2014. < http://www.imaios.com/en/e-Courses/e-MRI/>.

[8] Park, Sung-Hong, Danny JJ Wang, and Timothy Q. Duong. "Balanced steady state free precession for arterial spin labeling MRI: Initial experience for blood flow mapping in human brain, retina, and kidney." *Magnetic resonance imaging* 31.7 (2013): 1044-1050.

[9] Park, Sung-Hong, and Timothy Q. Duong. "Brain MR perfusion-weighted imaging with alternate ascending/descending directional navigation." *Magnetic Resonance in Medicine* 65.6 (2011): 1578-1591.

[10] Park, Sung-Hong, and Timothy Q. Duong. "Alternate ascending/descending directional navigation approach for imaging magnetization transfer asymmetry." *Magnetic Resonance in Medicine* 65.6 (2011): 1702-1710.

[11] Park, Sung-Hong, et al. "Suppression of effects of gradient imperfections on imaging with alternate ascending/descending directional navigation." *Magnetic Resonance in Medicine* 68.5 (2012): 1600-1606.