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Electrical/Mechanical Tissue Property Imaging

Due to nutritional and metabolic disorder, the physical property of a biological
tissue will change according to the change in tissue composition.

Electrical Property (0 Hz ≤ ω/2π ≤ 1MHz):

∇ · ((σ + iωε)∇u) = 0

Electrical Property (100kHz≤ ω/2π ≤ 1GHz):

−∇2H =
∇(σ + iωε)
σ + iωε

×∇×H− iµ0ωκH

Mechanical Property (0 Hz ≤ ω/2π ≤ 10kHz)

∇ ·
(
µ∇u

)
+∇

(
(λ+ µ)∇ · u

)
= −ρω2u



Elliptic PDE Beginning.

Admittivity σ + iωε & potential u (ω/2π ≤ 100kHz) are connected by

∇ · ((σ + iωε)︸ ︷︷ ︸
3×3matrix

∇u ) = 0

σ + iωε can be viewed as an ensemble average of pointwise
admittivity (via homogenization).
The effective σ + iωε depends on scale and ω.
Math. model is derived by a suitable arrangement of Maxwell’s
equations: σ=conductivity, ε=permittivity.

Name Time-varying Field Time-harmonic Field
Gauss’s law ∇ · B = 0 ∇ · B = 0

Faraday’s law ∇× E = − ∂
∂t B ∇× E = −iωB

Ampére’s law ∇×H = σE + ∂
∂t D ∇×H = (σ + iωε)E



What type of effective κ = σ + iωε can you
visualize? ∇ · ((σ + iωε)∇u ) = 0

The effective admittivity spectra should be useful as a means of
assessing disease process.
Robust reconstruction↔ Measurable quantities with taking
account of well-posedness (existence, uniqueness, stability) of the
inverse model.
Want to observe anisotropy of tissue decreasing with ω.



Conductivityσ describes material’s ability to
transport charge.

X σ ∝ tCA: characteristic time average of the charge particle.

J is defined by considering movements of each charged particles (such
as ions) inside the body due to E.
If its movement is NOT impeded by the molecular environment,

v(t) =
q
m

t E↗∞ ( from qE = mass
d
dt

v)

However, its movement is impeded by its molecular
environment so that the particle’s average drift velocity 〈v〉ave can
be determined by the molecular structure:

〈v〉ave =
q
m

tCA E (J = ρ〈v〉ave  σ = ρ
q
m

tCA)



X The permittivity ε is a material property determined by the
polarization of the dielectric under an external electric field E.

When a dipole p := q(r	 − r⊕) is placed in an external electric
field E, the dipole moment p in E experiences torque:

τ = r⊕ × (qE) + r	 × (−qE) = p× E.

The torque tends to rotate the dipole p to line up with E. For
non-polar molecules, E produces induced dipole moments by
distorting the charge distributions.



κ = σ + iωε is defined by Ohm’s law:

J = −(σ + iωε)E ≈ −κ∇u (κ = σ + iωε)

What type of the admittivity κ can you visualize?

Extra-
Cellular
Fluid

-Cl
+Na

-Cl+Na

+Na -Cl

+ + + + + + +

+ + + + + + +

_ _ _ _ _ _ _

_ _ _ _ _ _ _
~

+

v(t)

−

Cell Membrane

Intra-
Cellular
Fluid

sin) ( )(i t I tω= 

Effective conductivities of fibrous tissues are anisotropic. What
sense?



Four different definitions of admittivity κ.

Pointwise admittivity (κpt = σpt + iωεpt) refers to as electrical
properties at microscopic scale.
Effective admittivity (κeff = σeff + iωεeff ) is defined at macroscopic
scale. It is used to describe the linear relationship between the ensemble
mean current density and the ensemble mean electrical field.

Apparent admittivity is defined as the admittivity of locally homogeneous
and isotropic medium that could yield the potential measured on the
heterogeneous subject using the same applied current and arrangement of the
electrodes.

Two expressions that have the same effective admittivity are called
equivalent admittivity.



What is the definition of effective admittivity (κeff = σeff + iωεeff ) ?

Effective admittivity κeff in a voxel � can be viewed as
∫

�
κpt∇upt = κeff

∫

�
∇upt

for all possible potential upt satisfying ∇ · (κpt∇upt) = 0 in a region
including �.
Unfortunately, there is no such a 3× 3 matrix κeff satisfying the
above identity exactly in general. The best we can do is to find the
optimal tensor κeff minimizing the difference......



Pointwise conductivity vs Effective conductivity

σpt and εpt are assumed to be isotropic and independent to ω.
σeff and εeff can be approximately represented by 3× 3
symmetric matrix.
σeff and εeff depend on the frequency ω.

Double layer potential +Harmonic: 
electrical potential jump across the 
insulating membrane

Single layer potential +Harmonic: 
electric field refraction due to the change 
of conductivity 

Insulating memebrane



σeff and εeff of biological tissue depend on the
frequency ω.

X For biological subject such as carrot and cucumber, ∂
∂ω
σeff � 0

and ∂
∂ω
εeff � 0 due to the presence of membrane.

X For non-biological subject, ∂
∂ω
σeff ≈ 0 and ∂

∂ω
εeff ≈ 0 due to

the absence of membranes.
· Measuring frequency dependent behavior of effective

conductivity increases distinguishability.

Conductivity images: (middle) tdEIT (left) fdEIT.



Homogenization (Ammari, Garnier, Giovangigli, Jing, Seo, 2013)

Consider a periodic array of membranes Γε,n in 2D domain.

Denoting κm = σm + iωεm on Γ, κ0 = σ0 + iωε0 in Γ+ ∪ Γ−, υ = |Γ−|
|Γ+∪Γ−| ,

∇ · (κω0 ∇uε) = 0 in Ω \ ∪nΓε,n[
∂u+ε
∂n

]
= 0 on ∪n Γε,n

[uε]− dκω
0

κω
m

∂uε
∂n = 0 on ∪n Γε,n,

uε(x) := u0(x) + u1(x, x
ε
) + o(ε)

uε ⇒ u0

∇uε ⇒ ∇u0 + χΓ−∇yu1 + χΓ−∇yu1

u1(x, y) =
∑

i
∂u0
∂xi

(x)wi(y)

∇ · ((σeff + iωεeff )∇u0) = 0

σeff + iωεeff = (σ0 + iωε0)
(
I + υM(I − υ

2 M)−1)+ o(υ2) and

M =

(
−

d(σ0 + iωε0)

(σm + iωεm)

∫

Γ/υ
nj

(
I +

d(σ0 + iωε0)

(σm + iωεm)
LΓ/υ

)−1

[ni]

)



Frequency-dependent behavior of σeff + iωεeff

σeff + iωεeff = (σ0 + iωε0)
(
I + υM(I − υ

2 M)−1)+ o(υ2) and

M =

(
−d(σ0 + iωε0)

(σm + iωεm)

∫
Γ/υ

nj

(
I +

d(σ0 + iωε0)

(σm + iωεm)
LΓ/υ

)−1

[ni]

)

Studies on determination of the effective property of a suspension: Maxwell,
Poisson, Faraday, Rayleigh, Fricke, Lorentz, Debye, and Einstein.

Maxwell-Wagner-Fricke formula in the case of disk.

M =
2πr3dω(εmσ0 − ε0σm)

(2rσm + σ0d)2 + ω2(2rεm + ε0d)2 I (r = radius of disk)

 Debye relaxation time τ = (2rσm + σ0d)/(2rεm + ε0d)

Frequency-dependent anisotropy:

λ1(ω)

λ2(ω)
≈ 1 + (l1 − l2)

2dσmυ

(σ2
m + ω2ε2

m)|Γ| + O(d2),

λ1 ≤ λ2: eigenvalues of ={M(ω)} & l1 ≤ l2: eigenvalues of
∫

Γ/υ
nLΓ/υ[n]ds.



Experiment: Apparent conductivity

In this experiment, the pointwise conductivity is
σpt = (1 + (10−8 − 1)χC). The corresponding potential upt satisfies

∇ · ((1 + (10−8 − 1)χC)∇upt) = 0 in Ω

where C := thin film with holes.

M R I  I m a g e

Saline

V e r y  T hi n  I ns ul a t i ng F i l m  
ha v i ng s m a l l  ho l e s



Apparent conductivity
The film is too thin to capture by any impedance imaging system.
According to MREIT experiment, the reconstructed conductivity image
is of the form:

σapprent =

{
σ1 inside the film
σ2 outside the film

(Left) Pointwise conductivity (Right) Apparent conductivity



Apparent conductivity [Oh et al , PMB 2008]

The apparent conductivity by MREIT changes with the size of hole:

∇ · (σ∇u) = 0 in Ω σ =

{
σ1 inside the film
σ2 outside the film

Bz data  &  Reconstructed Conudctivity distribution using MREIT 

Ø of hole Without 
hole Ø 1mm Ø 2mm Ø 3mm Ø 4mm Ø 5mm Ø 6mm Ø 10mm

Conductivity 
change(%) 0 0.94 1.39 1.86 2.36 2.92 3.14 4.35



Conductivity changes with frequency. [IEEE TMI2012]

(Top) Conductivity images at frequency 500 Hz using MREIT.

(Bottom) Conductivity images at frequency 126 MHz using EPT.

(Left) With insulating thin film & (Right) Without the film.

(Top-Left) J cannot pass through the thin insulating film.
(Bottom-Left) J can pass through the film.
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Issues in EIT.

X Bioimpedance spectroscopy can be used for clinical assessment of
tissues since it reflects tissue composition variations, membrane
characteristics, intra- and extracellular fluids and other factors.

X Can impedance imaging technique distinguish between carrot and
cucumber? HOW?
· Measuring frequency dependent behavior of effective

conductivity increases distinguishability.

16 channel EITFrequency difference EIT

Time-difference EIT



Electrical Impedance Tomography (EIT)

Aim: image internal admittivity distribution (γ = σ + iωε) from
Nuemann-to-Dirichlet data measured by electrical electrodes on the
boundary.



EIT Application: Lung Ventilation

Load movie...
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미래융합의료기기과제 발표평가 2014년 5월

83

Lung EIT in ICU and OR

http://www.swisstom.com

• Life‐saving of 1.1 million patients per year
• Cost‐saving of US$ 3000 – 10,000 per patient

• Amato et al., New England Journal of Medicine, 1998:338:347‐54
• ARDS Network, New England Journal of Medicine, 2000:342:1301‐8
• Rubenfeld et al., New England Journal of Medicine, 2005:353:1685‐93
• Wunsch et al., Critical Care Medicine, 2010:38:1947‐53



Application of EIT: Obstructive Sleep Apnea

Experiment Electrodes configuration



EIT Application: Spectroscopic Admittivity Imaging

Aim: determination of concrete cracks and reinforcing bars.

Model

C1

C2

D1 D2

D2D1 C4C3

C1

C2

ω low high



Two-dimensional Sensor using EIT 
Chameleon TVR 2012 (PPS) 

- 35,000,000 Won (40×40 cm2) 

- Piezo-capacitive 

Emed (Novel) 

- 150,000,000 Won (100×200 cm2) 

- Piezo-capacitive 

100 



Two-dimensional Sensor using EIT 101 



Electro-magnetic Tissue
Property Imaging using MRI
X Experimental validation is needed to correct any mismatch between
mathematical theory and experiment.

Imaging object

(Phantom/Animal) Electrodes

(recessed/hyrdogel) 

Imgaing object 

inside RF coil 



Electro-Magnetic Tissue Property Imaging

Electromagnetic tissue properties include electrical conductivity σ,
permittivity ε and magnetic susceptibility χ.
Three methods were successful in experiments. Distributions of
κ = σ + iωε and χ in a subject are sources of magnetic field
perturbations.

MREIT MREPT QSM
E+

E−

σ  B
σ + δσ
 B + δB RF coil

I sinωtκ  B
κ+ δκ
 B + δB

N

S

B0
χ  δB

−σE = ∇×H −κE = ∇×H M = χH0
∇× E = 0 ∇× E = −iωB M δB



MREIT Math. Model
When modeling, we must take account of well-posedness
(Uniqueness, Existence, Stability).
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 k-space dataata
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RF

Slice
Selection

Phase
Encoding

Reading
 
Positive
Current I+
 

90º 180º

Tc/2I

−I

Sj(kx, ky, z0) =

∫

Ωz0

M(x, y, z0)e
iδ(x,y,z0)eiγTcBz,j(x,y,z0)ei(xkx+yky)dSxy

1

µ0

∇×Bj = −σ∇uj

I = ±
∫

E±
j

σ∇uj · n ds

(j = 1, 2) Bz,1 & Bz,2σ



MREIT using full components of H:
Major drawback: It requires subject rotation inside MRI scanner.

Least square method
[Zhang 1992]

min
σ

1
2
‖∇ ×H + σ∇u ‖2

Finite element model True

1/σ

1/σ 1/σReconstructed

Low spatial resolution

[Woo, Lee, Moon 1994], [Idel and Birgul
1995]

J−substitution method
[Kwon, Seo, Yoon, Woo 2001]

∇ ·
( |J|
|∇u|∇u

)
= 0

True Reconstructed 1/σ 1/σ

High spatial resolution

In 2005-present, CDII by Nachman,
Tamasan, Timonov, Joy



Drawback of MRCDII: Need to measure three components B =

(Bx,By,Bz) to recover σ via ∇ ·
(
|∇×B|
|∇u| ∇u

)
= 0. However, MR scanner

can measure only Bz.

Measuring B = (Bx,By,Bz) requires
impractical subject rotations.

Serious practical difficulties arise
from this requirement because of
the limited space within the bore.
Despite numerous attempts to
overcome these difficulties,
drawbacks remain, which
seriously limit the clinical
applicability of the method.

According to Maxwell’s eqn, J is
directly related to B = (Bx,By,Bz),
and σ must be computed from the
relationship between J and E.
Therefore, Bz data alone were
considered insufficient for
conductivity image
reconstructions, and conductivity
imaging using Bz data alone
appeared impossible until 2000.



Harmonic Bz-algorithm [2002; Seo, Kwon, Yoon, Woo]

The conductivity distribution σ can be reconstructed by only Bz:

∇2
xy lnσ(r) = ∇xy ·

(
A†(r)

[
∇2Bz,1(r)
∇2Bz,2(r)

])

where A†(r) :=
1
µ0

[
σ ∂u1[σ]

∂y (r) −σ ∂u1[σ]
∂x (r)

σ ∂u2[σ]
∂y (r) −σ ∂u2[σ]

∂x (r)

]−1

This formula exists in an implicit form owing to the nonlinear relationship
between σ and Bz, but it was designed to use a fixed-point theory. The major
drawback of EIT, ill-posedness is mainly due to the fact that the overall flow of J
is insensitive to local perturbations in σ. However, the harmonic Bz method
takes advantage of this fact to make the algorithm work.

Bovine Tongue Porcine Muscle

Chicken BreastAgar Gelatin

Recessed
Electrode

Air
Bubble

140mm
140mm

(1) Chicken
breast

(2) Porcine
muscle

(3) Bovine
tongue

(3)

(2)

(1)



MREIT Images
MREIT is the most advanced conductivity imaging technique and now
can offer state-of-the-art conductivity imaging for animal and human
experiments. Until now, static EIT has not been successful in animal
experiments.

Magnetic resonance magnitude image 

MR
magnitude
image

Conductivity
image
(MREIT)



Magnetic Resonance Electrical Property Imaging

MREPT is a relatively new MR-based imaging modality to provide both
conductivity (σ) and permittivity (ε) images at MR Larmor frequency

(about 128 MHz at 3 Tesla MRI).

Conductivity Permittivity

[Katscher et al IEEE TMI (2009)], ω
2π =128MHz

Refer the book ”Electro-Magnetic Tissue Properties MRI” by [Seo, Woo, Katscher,
Wang (2013)].



Measurable quantities in EPT 1

Using B1 mapping technique, we can measure the positive
rotating magnetic field H+ = 1

2 (Hx + iHy) which is governed by

−∇2H =
∇κ
κ
× (∇×H)− iωµ0κH

Unfortunately, we cannot measure H− = 1
2(Hx − iHy). Hence,

each components Hx,Hy,Hz are not available.
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Inverse problems of EPT

Reconstruct the conductivity σ and permittivity ε (at frequency 126
MHz) from the given H+ data and

−∇2H =
∇κ
κ
× (∇×H)

︸ ︷︷ ︸
refraction term

−iωµ0κH

> Note that σ and ε (as effective properties) change with ω.

Imaging object 3Ω⊂ R

B1 mapping

0{ }z z=

0Real part of ( , ) ,x y zH +

0Imaginary part ( , , )of x y zH +

Coductivity ( , , )x y zσ

* 0Relative permittivity ( , , )r x y zε

Data

 

 

1

 

 

1

?
?



EPT-way of feeling admittivity

H+ = 1
2(Hx + iHy) probes κ = σ + iωε through PDE

−∇2 H+(r)︸ ︷︷ ︸
Data

=
1
2

((x̂ + iŷ)× (∇×H(r))) · ∇ lnκ︸︷︷︸
target

− iωµ0 κ︸︷︷︸
target

H+(r).

Experiment Setting ( )H +ℜ ( )H +ℑ Target σ

[Haacke1991]



Why only H+ = Hx + iHy is measurable quantity?

According to Faraday’s law and reciprocity principle [Hoult2000], the induced

RF-signal at the coil C is

ξ︸︷︷︸
RFsignal

:=

∮

C
EM · d` = −i

ωµ0

I

∫

Ω

H(r) ·M(r) dr

RF excitation with the main field B0 = −B0ẑ generates magnetic field
<{eiω0tH(r)} (called B1-field) that is influenced by κ = σ + iωε. Here, ω0 = γB0

where γ is the gyromagnetic ratio.

During RF excitation, <{eiω0tM(r, t)} precess according to Bloch equation
∂
∂t<{e

iω0tM(r, t)} = <{eiω0tM(r, t)} × γ(B0 + <{eiω0tH(r)}).
If we turn off RF field H, M creates time-harmonic fields HM and EM that are
dictated by ∇× EM = −iω0µ0(HM + M) & ∇×HM = κEM



Why is only H+ measurable from RF signal?

Recalling that ξ :=
∮
C EM · d` = −iωµ0

I

∫
Ω

H(r) ·M(r) dr, the following NMR
RF signal for each angle α is measurable:

ξα(r) := 2C1M0(r)H−(r)

(
sin
(
C2α|H+(r)|

) H+(r)

|H+(r)|

)
.

The transverse field Hxy = Hxx̂ + Hyŷ can be decomposed into
Hxy =

Hx−iHy
2 a+ +

Hx−iHy
2 a− = H+a+ + H−a− where a± = x̂∓ iŷ.

The transversal component Mxy = Mxx̂ + Myŷ interact with H+

components and it can be approximated by
Mxy(r) ≈ C1M0(r)

(
sin (C2α|H+(r)|) H+(r)

|H+(r)|

)
a+.

The identity follows from a− · a− = 0 & a− · a+ = 2.

> In MRI community, H+ with B0 being positive z-direction is known as
measurable quantity. But that is NOT true. The truth is that H− is measurable
quantity.



Conventional method : Ignore the refraction term

−∇2H =
∇κ
κ
× (∇×H)

︸ ︷︷ ︸
refraction term

−iωµ0κH

Wen (2003) uses the assumption of local homogeneity of κ to
get

κ(r) =
i

ωµ0

∇2H+(r)

H+(r)

Katscher et al (2009) performed initial experiments on a standard
clinical MRI system: For any disk Dδ(r0) ⊂ Ω where ∇κ ≈ 0,

κ =

∮
∂Dr
∇×H · d`

iµ0ω
∫

Dr
H · dS

.



In the locally homogeneous region (∇κ ≈ 0),

−∇2H = ∇ lnκ×∇×H︸ ︷︷ ︸
=0

− iµ0ωκH ⇒ κ =
1

iωµ0

∇2H+

H+

This formula does not work when evaluating small conductivity
anomalies.

heart liver

SE σ

oil/water 
phantom



Direct reconstruction formula κ = 1
iωµ0

∇2H+

H+

Neglecting ∇ lnκ(r)× [∇×H(r)] causes serious artifacts.

True conductivity * 0( , , )x y zσ

True relative permittivity

* 0( , , )r x y zε

Reconstructed conductivity

( , , )x y zσ
Profile along the red line Profile along the black line

Profile along the red line Profile along the black lineReconstructed relative per-

mittivity 0( , , )r x y zε

in 0( , , )x y zσ in 0( , , )x y zσ

in 0( , , )r x y zε in 0( , , )r x y zε
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Figure shows that the direct method produces serious errors near
small anomalies.



Error analysis: Direct formula κ∗ = 1
iωµ0

∇2H+

H+

Error = κ− κ∗ =

(
1

iωµ0

∇2H+

H+
− ∇

2H−

iωµ0H−

)[
1−

H+ ∂
∂z H−

H− ∂
∂z H+

]−1

where H = (H+ + H−,−iH+ + iH−,Hz).

MREPT

MREIT

Phantom Model Reconstruction Horizontal axis Vertical axis

[Seo et al IEEE TMI 2012]



We should include the refraction term
∇ lnκ(r)× [∇×H(r)] in the reconstruction algorithm

Theorem (Govern equation: Y. Song & S, (SIAM AP2013))
Assume Hz = 0. The admittivity κ satisfies the equation

VH+(r) · ∇ lnκ(r)− iωµ0H+(r)κ(r) = −∇2H+(r) for r ∈ Ω (♣)

where VH+ := −
(

2∂H+, 2i∂H+, ∂H+

∂z

)
& ∂ = 1

2( ∂∂x − i ∂∂y).

This first-order PDE may not be solvable for κ since the direction
vector field VH+ is not real-valued function. The method of
characteristics can not be applied. Indeed, Hörmander and Lewy
provided non-existence results for the first order PDE with
complex-valued coefficients.



Degenerate Elliptic PDE[Kwon et al 2014 ]

Theorem
The distributions of σ and ε satisfy the following equation:

∇ ·
(

A[H+]∇
(

σ
ωε

))
+ F0[H+] · ∇

(
σ
ωε

)
=

(
F1[σ, ε,H+]
F2[σ, ε,H+]

)
in Ω,

where A[H+] is a positive semi-definite matrix given by

A[H+] =




P2
x + P2

y 0 PxPz + PyQz

0 P2
x + P2

y PyPz − PxQz

PxPz + PyQz PyPz − PxQz P2
z + Q2

z


 in Ω.

P = (Px, Py, Pz) =

(
−
∂

∂x
H+

r −
∂

∂y
H+

i ,
∂

∂x
H+

i −
∂

∂y
H+

r , −
∂

∂z
H+

r

)
,

Q = (Qx,Qy,Qz) =

(
∂

∂x
H+

i −
∂

∂y
H+

r ,
∂

∂x
H+

r +
∂

∂y
H+

i ,
∂

∂z
H+

i

)
,

E[η,H+
] = Q[H+

] · ∇(P[H+
] · ∇η)− P[H+

] · ∇(Q[H+
] · ∇η),

φ = ωµ0H+
i σ

2 − ωµ0H+
i ε

2
+ 2ωµ0H+

r σε + ∆H+
r σ − ω∆H+

i ε,

ψ = −ωµ0H+
r σ

2
+ ωµ0H+

r ε
2

+ 2ωµ0H+
i σε + ∆H+

i σ + ω∆H+
r ε.



Results: Solving degenerate elliptic PDE

it5: Conductivity Error Permittivity Error

it10: Conductivity Error Permittivity Error



Quantitative Susceptibility
Mapping (QSM)
QSM: aims to visualize magnetic susceptibility χ from MR data.

Magnetic susceptibility χ: an intrinsic property of the material
relating the magnetization M and the magnetic field H via
M = χH.



Applications of QSM: Disease diagnosis (Parkinson’s, Alzheimer,
stroke, blood calcification, etc.)

MR Magnitude Image Susceptibility Image



Inverse Problem of QSM

Solve the deconvolution problem for χ:

ψ(x) = pv
∫

R3
d(x− y)χ(y)dy d(x) =

2x2
3 − x2

1 − x2
2

4π|x|5

Ψ(ξ)︸ ︷︷ ︸
F(ψ)(ξ)

=

(
1
3
− ξ2

3
|ξ|2

)
X (ξ)︸ ︷︷ ︸
F(χ)(ξ)

= D(ξ)X (ξ).

(pv: the principal value of the integral, F: Fourier transform)

Data: relative difference field (RDF) ψ (noisy)
Integral kernel d: singular (d(rx) = r−3d(x) for r > 0).

= ∗

Data ψ (Noisy) Unit dipole field d Susceptibility χ



Challenging Issue

ψ(x) = pv
∫
R3

d(x− y)χ(y)dy (IP-I)

Ψ(ξ)︸ ︷︷ ︸
F(ψ)(ξ)

=

(
1
3
− ξ2

3

|ξ|2

)
︸ ︷︷ ︸

D(ξ)

X (ξ)︸ ︷︷ ︸
F(χ)(ξ)

(IP-F)

ill-posed since

D(ξ) = 0 in Γ0 =
{
ξ ∈ R3 : ξ2

1 + ξ2
2 − 2ξ2

3 = 0
}
,

and this leads to the streaking artifacts.

Data ψ Γ0 in Fourier domain Reconstructed χ using (IP-F)



Source of Error Propagation

For a given measurement ψ ∈ E′, we aim to obtain χ ∈ E′ using
(IP-I) or (IP-F):

ψ(x) = lim
ε↘0

∫

|x−y|>ε
d(x− y)χ(y)dy (IP-I)

Ψ(ξ) = D(ξ)X (ξ) =

(
1
3
− ξ2

3
|ξ|2

)
X (ξ) (IP-F).

(D′: space of distributions, E′: space of compactly supported distributions, S′: space of

tempered distributions)

If ψ ∈ E′ satisfies (IP-F) for some χ ∈ E′, then ψ must lie in

E′♦ :=
{

u ∈ E′ : û(ξ)/P(ξ) is bounded near Γ0
}
.

Here, P(ξ) is the polynomial defined as

P(ξ) =
4π2

3
(ξ2

1 + ξ2
2 − 2ξ2

3).



Theorem (Existence and Uniqueness [J.K.Choi et al . 2014.])

If ψ ∈ E′♦, we have the unique χ ∈ E′ satisfying (IP-F), and X = F(χ)
can be represented as

X (ξ) =





4π2|ξ|2Ψ(ξ)

P(ξ)
if ξ 6∈ Γ0

−9ξ3

4
∂Ψ

∂ξ3
(ξ) if ξ ∈ Γ0 \ {0}.

(♣)

(Proof follows from Paley-Wiener-Schwartz theorem.)

Reference χ ψ ∈ E′♦ Reconstructed χ using (♣)



Cause of Streaking Artifacts

Streaking artifacts: closely related with the PDE

P(D)χ =

(
−1

3
∆ +

∂2

∂x2
3

)
χ = −∆ψ (IP-PDE)

The solution χ] ∈ D′ to (IP-PDE) is expressed as

χ](x) = E ∗ (−∆ψ)(x) = −
∫

R3
E(x− y)∆yψ(y)dy ψ ∈ E′ (S-PDE)

where E(x) is the fundamental solution of P(D):

E(x) =





3

4π
√

x2
3 − 2(x2

1 + x2
2)

if 2(x2
1 + x2

2) < x2
3

0 otherwise.

E(x) has the singular support along
{

x ∈ R3 : 2(x2
1 + x2

2) = x2
3

}
.



Microlocal Analysis of Inverse Problem

Key Observation
To analyze the streaking artifacts in an image, simultaneous
concentration on both image and its Fourier transform is crucial.

Definition
Wave front set of u ∈ D′: a closed conic set in R3 × (R3 \ {0})

WF(u) =
{

(x, ξ) ∈ R3 × (R3 \ {0}) : ξ ∈ Σx(u)
}
.

ξ /∈ Σx(u)⇐⇒ ∃ϕ ∈ C∞c with ϕ(x) 6= 0 and a conic nbd V of ξ s.t.

sup
η∈V

(1 + |η|)N |ϕ̂u(η)| <∞ ∀N ∈ N.

If (x, ξ) ∈ WF(u), then

x ∈ sing-supp(u) =⇒ location of singularity

ξ ∈ Σx(u) =⇒ cause of singularity



Theorem (Characterization of Artifacts [J.K.Choi et al . 2014.])
For ψ ∈ E′, the wave front set of χ = χ] satisfies

WF(χ) \WF(ψ) ⊆
{

(t∇P(ξ) + x, ξ) : ξ ∈ Γ0 \ {0}, t 6= 0, (x, ξ) ∈WF(ψ)
}

Moreover, if (x, ξ) ∈WF(χ) \WF(ψ), then
ξ ∈ Γ0

for any open interval (a, b) containing 0 such that{
(x + t∇P(ξ), ξ) : t ∈ (a, b)

}
∩WF(ψ) = ∅, we have

{
(x + t∇P(ξ), ξ) : t ∈ (a, b)

}
⊆WF(χ).

Simulated ψ ∈ E′ \ E′♦ Fundamental solution E χ] = E ∗ (−∆ψ)



Regularization

Reduces streaking artifacts using total variation and wavelet Φ:

χ = arg min α‖χ‖TV + β‖Φχ‖1 +
1
2
‖DF(χ)−Ψ‖2

L2 [TVL1L2]

[B.Wu et al . 2012]

May lack realistic variations (in the case of real measured data)

Measured ψ ∈ E′ TKD (~ = 0.08) TKD (~ = 0.16)

[TVL1L2] (α = β = 0.0005) [TVL1L2] (α = β = 0.002) [TVL1L2] (α = β = 0.008)



Morphology Enabled Bayesian Approach

Spatial priors can be used to improve [TVL1L2]:

χ = arg min α‖M∇χ‖1 +
1
2
‖W(d ∗ χ− ψ)‖2

L2 [MEDI]

[T.Liu et al . 2009] M: structural weighting matrix, W: noise weighting matrix

Improve morphological information
Obtain weighting matrices empirically

Measured ψ ∈ E′ [TVL1L2] (α = β = 0.0005) [MEDI] (α = 0.0005)



MR elastography (with Liangdong Zhou)

Inaccurate, Qualitative VS. Accurate, Quantitative2

Palpation Elastography

Elastography generation procedure3:

Vibration MRI Displacement Elastography

2
http://www.drbambach.de and http://parade.condenast.com

3
http://www.mayoclinic.org/



Mathematical Model

For linearly incompressible, viscoelastic object Ω ∈ R2, when we apply the
time-harmonic vibrations through the boundary, the induced internal displacement
field u satisfies

∇ ·
(
(µ+ iωηµ)(∇u +∇ut)

)
+∇((λ+ iωηλ)∇ · u)︸ ︷︷ ︸

Trouble!!!

+ρω2u = 0

Note that the medium is incompressible (∇ · u ≈ 0)
and λ ≈ 3µν

(1−2ν)(1+ν)
≈ ∞ for Poisson ratio ν ≈ 0.5,

Denote the internal pressure p = λ∇ · u in the limit
sense p = limλ→∞,∇·u→0 λ∇ · u and strain tensor
∇su = 1

2 (∇u +∇ut).

We have forward problem in the above sense

Ω

ΓD

<{ueiωt}

ΓN

Figure 1: time harmonic vibration model
2∇ · (µ+ iωηµ)∇su +∇p + ρω2u = 0 in Ω,

∇ · u = 0 in Ω,

u = g on ΓD,

2(µ+ iωηµ)∇sun + pn = 0 on ΓN .

The inverse problem is to reconstruct µ and ηµ with measured data um.



Adjoint-based Optimization Reconstruction

Define the discrepancy functional and do minimization:

J[µ, ηµ] =
1
2

∫
Ω

|u[µ, ηµ]− um[µ∗, η∗µ]|2dx.

We introduce the following adjoint problem
2∇ · (µ− iωηµ)∇sv +∇q + ρω2v = (u− um) in Ω,

∇ · v = 0 in Ω,

v = 0 on ΓD,

2(µ− iωηµ)∇svn + qn = 0 on ΓN .

Theorem (Fréchet derivatives)
Fréchet derivatives of J[µ, ηµ] in µ and ηµ:

∂

∂µ
J[µ, ηµ] = < [2∇su : ∇sv̄dx] ,

∂

∂ηµ
J[µ, ηµ] = < [2(iω∇su) : ∇sv̄dx] .

Theorem (Iterative scheme)
With proper initial guess µ0 + iη0

µ, we
have

µm+1 = µm − δ ∂J
∂µ

(µm, ηm
µ),

ηm+1
µ = ηm

µ − δ
∂J
∂ηµ

(µm, ηm
µ).



Numerical Results: Reconstruction in whole domain

(a) (b) (c) (d) (e) (f)

(a) True images; (b) reconstruction with homogeneous initial guess; (c) direct inversion method; (d) reconstruction with initial

guess (c); (e) hybrid one-step method; (f) reconstruction with initial guess (e).



Numerical Results: Reconstruction in local domain

(a) (b) (c) (d)

(a) True images; (b) hybrid one-step method; (c) reconstruction with initial guess (b); (d) reconstruction in local domain.



Challenging Issues in X-ray CT: Removing Metal
Artifact

Hyoung Suk Park

With the presence of metallic objects in the field of view, bright
and dark streaking artifacts are introduced.
It is still challenging issue due to serious difficulties in analyzing
the X-ray data.
Our goal is to provide a rigorous characterization of the metal
streaking artifacts using the notion of the wavefront set.



Basic CT Reconstruction Algorithm

ϕ

θ

s

fE0(x1, x2)

P (ϕ, s) = RfE0(ϕ, s)

x1

x2

ϕ

s

RfE0(ϕ, s) =

∫

R2
fE0(x)δ(x · θ − s)dx : Radon transform

fE0(x) =
1

4π
R∗I−1RfE0(x) : Inverse Radon transform

X-ray has multiple energy levels. X-ray data and CT image are given by

(X-ray data) P(ϕ, s) = − ln

(∫ E

E
η(E) exp

{
−RfE(ϕ, s)

}
dE

)

(CT image) fCT(x) =
1

4π
R∗I−1P(x)



CT Reconstruction Error due to the Nonlinearity

The difference between P and RfE0 is represented by

[P−RfE0 ](ϕ, s) ≈
∫ E

E
η(E′)

∫ E′

E0

[
e−R[fE−fE0 ](ϕ,s)R

[
∂fE
∂E

]
(ϕ, s)

]
dEdE′

These strong nonlinear effects lead to streaking artifacts.

Reconstructed metal image

Obeject to be imaged Reconstructed image
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Mathematical Tool: Wavefront Set

Wavefront Set: The wavefront set of f is given by

WF(f ) =
{

(x, ξ) ∈ R2 × (R2 \ {0}) : ξ ∈ Σx(f )
}
,

-x: Singularity (or jump in image)
-ξ: Direction of singularity

Characteristic function 

Singularity

Direction

WF(χΩ) =
{

(x, ξ) ∈ R2 × (R2 \ {0}) : x ∈ ∂Ω, ξ is the normal to ∂Ω at x
}
.



Characterization of Streaking Artifacts I

• Lϕ,s : streaking artifact⇒ dim
(
Span[Σ(ϕ,s)(RχD)]

)
= 2

s FBP

( , )y θ ( , )z θ ( , )sϕ

( , )P sϕ

( , )x θ

,sLϕ

Meaning : If there exist distinct x1, x2 ∈ ∂D such that the straight line
x · θ = s is tangent to ∂D at x1 and x2 simultaneously, then the
streaking artifacts will occur on this straight line x · θ = s.



Characterization of Streaking Artifacts II

• D is strictly convex⇒WF(fCT) ⊆WF(fE0)



Other sources of Streaking Artifacts: Scattering and
Noise

Scattering effects: Assuming scattering to be a constant [Glover,

1982], we have

P(ϕ, s) = − ln I(ϕ, s) = − ln(exp{−RfE0(ϕ, s)}+ c)

Noise effects: Assuming that N(ϕ, s) =
∑K

k=1 ckδ(ϕ− ϕk, s− sk),

P(ϕ, s) = − ln(exp{−RfE0(ϕ, s)}+ N(ϕ, s))

Original image Scattering Noise

Scattering: Streaking can occur , even though fE = fE0 .
Noise: Streaking can appear, regardless of geometry of objects.



Streaking Artifacts in CT Image

Most streaking artifacts occur along the tangent line of boundary
of metallic objects.
Streaking artifacts can appear between metallic object and bone
due to scattering or noise effect.



Remarks on Metal Artifacts Reduction Methods

Goal: Try to find P\ such that P\ ∈ Range space =
{
Rf \ : f \ ∈ E′

}
.

Existing MAR methods: Inpainting based methods.

TV inpainting may produce additional singularities due to the
nature of total variation minimization.
Based on the 1-1 correspondence, sing-supp(f \)corresponding to
sing-supp(P) in D can be recovered in reconstructed image.



Reconstructed CT Image Using MAR Methods

Streaking artifacts are reduced in the reconstructed image, and bone
information near the metallic objects is preserved, compared with LI
and TV.



Remarks on Metal Artifacts Reduction Methods

Metal image is recovered by solving the following minimization
problem: (J.Choi et al 2011)

min
f\m
‖f\m‖1 subject to ‖w− Lf\m‖2

M ≤ ε,

- f\m := f\ − f\b and P := u\ + w.

Simple thresholding FDK algorithm Corrected metal imageUncorrected CT image Uncorrected CT image    Background Image Metal image Corrected CT image



MAR with controlling wave front set
• D is strictly convex⇒ No streaking artifacts

 Reconstructed CT image

LI + thresholding Original image



Blood Flow Velocity in LV using
Ultrasound
Jaeseong Jang



Introduction

Aim : Visualization of blood flow velocity in the Left Ventricle using
Model which consider 3D fluid dynamics on our 2D imaging
plane,
Color Doppler data which provides us projected velocity
information.

(Amid) (Hong et al.)

Some existing methods need to inject contrast agent to obtain
particle images.



Color Doppler Data

Color Doppler data provides Projected velocity component
along the ultrasound beam direction.
This measurement is limited on the 2D imaging plane.
We combine the projected information with Navier-Stokes
equations.

Beam Direction

Doppler Data Velocity vector



Modelling of Our 2D Model

The blood flow is governed by 3D incompressible Navier-Stokes
equation (NSE).
Since we are interested in recovering (u, v), we rewrite 3D NSE as





∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

= −1
ρ

∂p
∂x

+
µ

ρ

(
∂2u
∂x2 +

∂2u
∂y2

)
+ f1,

∂v
∂t

+ u
∂v
∂x

+ v
∂v
∂y

= −1
ρ

∂p
∂y

+
µ

ρ

(
∂2v
∂x2 +

∂2v
∂y2

)
+ f2,

∂u
∂x

+
∂v
∂y

= −∂w
∂z
.

We need Additional terms to 2D NSE and cannot use 2D
incompressibility for u and v.



2D Navier-Stokes equation with mass source




∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

= −1
ρ

∂p
∂x

+
µ

ρ
∇2u +

µ

3ρ2
∂s
∂x
,

∂v
∂t

+ u
∂v
∂x

+ v
∂v
∂y

= −1
ρ

∂p
∂y

+
µ

ρ
∇2v +

µ

3ρ2
∂s
∂y
,

∂u
∂x

+
∂v
∂y

=
s
ρ
.

u, v : x, y componenets of 2D velocity vector

p : pressure

s : mass source

ρ, µ : fluid density and viscosity



Reconstruction Model
Combining the equation with Doppler data,





∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

= −1
ρ

∂p
∂x

+
µ

ρ
∇2u +

µ

3ρ2
∂s
∂x
,

∂v
∂t

+ u
∂v
∂x

+ v
∂v
∂y

= −1
ρ

∂p
∂y

+
µ

ρ
∇2v +

µ

3ρ2
∂s
∂y
,

∂u
∂x

+
∂v
∂y

=
s
ρ

(Mass Source Term),

a1u + a2v = c (Color Doppler Data),

with boundary conditions for u, v, p, and s.



Simulation of LV Blood Flow

t/T =0.2 t/T =0.5

t/T =0.7 t/T =1
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(a) Simulated velocity field
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(b) Simulated color Doppler data

Figure: Simulation of LV blood flow



Reconstruction Results

t/T =0.2 t/T =0.5

t/T =0.7 t/T =1
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(a) Simulated velocity field
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(b) Reconstructed velocity field



Thank you.
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This is the first book that presents a comprehensive introduction 

to and overview of electro-magnetic tissue property imaging 

techniques using MRI, focusing on Magnetic Resonance Electrical 

Impedance Tomography (MREIT), Electrical Properties Tomography 

(EPT) and Quantitative Susceptibility Mapping (QSM). The contrast 

information from these novel imaging modalities is unique since 

there is currently no other method to reconstruct high-resolution 

images of the electro-magnetic tissue properties including electrical 

conductivity, permittivity, and magnetic susceptibility. These three 

imaging modalities are based on Maxwell’s equations and MRI data 

acquisition techniques. They are expanding MRI’s ability to provide 

new contrast information on tissue structures and functions.

To facilitate further technical progress, the book provides in-depth 

descriptions of the most updated research outcomes, including 

underlying physics, mathematical theories and models, measurement 

techniques, computation issues, and other challenging problems.

We focus on experimental mathematics. We develop mathematical
theory in such a way that it can guide experiment on what to look for.
Modeling/Analysis⇔Numerical Simulation⇔Experiment
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