Selection of minimally correlated data for diffuse optical tomography

Sohail Sabir PhD canidateAdvisor: Professor Cho, Seungryong

Contents

- •Introduction
- \bullet Methodology
- \bullet Results
- \bullet Conclusions

Introduction

KAIST

 \bullet DOT is emerging imaging modality to provide functional characteristics (oxygen saturation and hemodynamics states) of thick biological tissue.

Introduction

• Finite set of surface intact boundary measurements are made by injecting NIR light through optical fiber bundle arrangements.

Methodology

 \bullet Start with the noisy measurements (SD pairs)

$$
\phi^m = \phi^c(\mu) + \psi_{gaussian}
$$

•Joint probability density function of the elements of the sample vector $\,\,\phi^m\,$

$$
p(\phi^m; \mu) = \left(\frac{1}{\sqrt{2\Pi\sigma}}\right)^N \exp\left[-\frac{1}{2\sigma^2} \sum_{n=0}^{N-1} (\phi^m - \phi^c)^2\right]
$$

 \bullet Under the assumption of uncorrelated measurement noise and similar statistical properties

 $\textbf{simplified to,} \qquad \textit{FIM} = \frac{1}{\sigma^2} [J^T J]$ where, $\bigg\}$ $\mathit{FIM}_{ij} = E \left\{ \frac{\partial \ln p(\phi^m; \mu)}{\partial \mu_i} \cdot \frac{\partial \ln p(\phi^m; \mu)}{\partial \mu_i} \right\}$ μ $\ket{\phi}$ \widehat{o} $=\frac{\partial}{\partial x}$ $J = \frac{\partial \boldsymbol{\phi}^c}{\partial \boldsymbol{\phi}^c}$

KAIST

Methodology

 \bullet Solve the eigen value problem to rank the SD pairs and iteratively delete the least contributed measurements to the linear independence of the unknown parameter

$$
[FIM_{REG} - \alpha I]\psi = 0
$$

 \bullet Fractional eigen value matrix

$$
FE=[J\psi\,]\mathop{\otimes}\,[J\psi\,]\alpha^{-1}
$$

•Eigen distribution vector

$$
ED = \left[\sum_{j=1}^{k} FE_{1j} : \sum_{j=1}^{k} FE_{2j} : \dots \dots \dots : \sum_{j=1}^{k} FE_{sj} \right]^{T}
$$

Methodology

Numerical Simulation

- • 2-D circular geometry
	- •Radius: 43 mm
	- •Target radius: 10 mm
- •Single wavelength simulation with 70MHz frequency modulation.
- • Forward Mesh
	- •#of nodes : 1785
	- \bullet #of triangular elements: 3419
- • Inverse Mesh
	- \bullet Pixel basis [30 30]
- •# of measurements (SD pairs): 240
- \bullet Optical contrast
	- •Homogenous background: $(\mu_a = 0.01 \text{ mm}^{-1}, \mu_s = 1 \text{ mm}^{-1})$
	- •Target: $(\mu_a = 0.02 \text{ mm}^{-1}, \mu_s = 1 \text{ mm}^{-1})$

Results

 \bullet Dependence of ED vector on regularization parameter

Results

Results

Conclusions

- \bullet Results demonstrated that similar contrast recovery is possible for optimized sparse configuration of SD pairs compared with the dense configuration.
- \bullet EFI method also provide us the opportunity to incorporate the prior knowledge on imaging domain in SD rank formulation.

Thank you

References

- \bullet D. C. Kammer, "Sensor placement for on-orbit modal identification and correlation of large space structure," Am. Control Conf. 1990, no. 1, pp. 2984–2990.
- P. K. Yalavarthy, R. Langoju, B. Pogue, H. Dehghani, and A. Patil, "Cramer-Rao estimation of error limits for diffuse optical tomography with spatial prior information," vol. 6434, no. 603, pp. 1–13, 2007.
- \bullet H. Dehghani, S. Srinivasan, B. W. Pogue, and A. Gibson, "Numerical modelling and image reconstruction in diffuse optical tomography Numerical modelling and image reconstruction," 2009.

