Intensity Inhomogeneity Correction in MRI via Low-Frequency DCT Coefficients Optimization

Mina Kim, and Jong Beom Ra

Image Systems Laboratory Department of Electrical Engineering, KAIST

Contents

- Introduction
- Related works
- Proposed method
- Experimental results
- Conclusion

Introduction

- Intensity inhomogeneity in magnetic resonance (MR) images
 - Smoothly varying bias field over a whole image
 - Causes
 - Static magnetic field inhomogeneity
 - Imperfection in the coils
 - Inhomogeneous RF penetration in body tissues

Intensity inhomogeneity in MR brain image^[1]

- Accuracy of MR image analysis can be considerably degraded.
 - Segmentation, registration, quantification, etc.

^[1]U. Vovk, F. Pernus, and B. Likar, "A review of methods for correction of intensity inhomogeneity in MRI," *IEEE Trans. Med. Imaging*, vol. 26, no. 3, pp. 405-421, 2007

- Existing retrospective methods^[1]
 - Filtering
 - Low-frequency inhomogeneity is separated from the highfrequency anatomical structures via low-pass filtering.
 - \rightarrow Anatomical structures may be mistakenly removed by filtering.
 - Surface fitting
 - Fit a parametric surface to a set of image features that contains information on the intensity inhomogeneity.
 - \rightarrow Successful if homogeneous areas are large and distinctive.
 - Segmentation-based
 - Merge segmentation and intensity inhomogeneity correction.
 - \rightarrow Require an additional segmentation algorithm.

^[1]U. Vovk, F. Pernus, and B. Likar, "A review of methods for correction of intensity inhomogeneity in MRI," *IEEE Trans. Med. Imaging*, vol. 26, no. 3, pp. 405-421, 2007

- Existing retrospective methods^[1]
 - Histogram-based
 - Minimize the image (histogram) entropy.
 - Need no initialization and/or prior knowledge.
 - Image structures are relatively well preserved.
 - Fully automatic and highly general

Effect of the intensity inhomogeneity in image histogram

^[1]U. Vovk, F. Pernus, and B. Likar, "A review of methods for correction of intensity inhomogeneity in MRI," *IEEE Trans. Med. Imaging*, vol. 26, no. 3, pp. 405-421, 2007

- Histogram-based
 - Nonparametric Non-uniform Intensity Normalization (N3)^[2]
 - Intensity inhomogeneity model: Multiplicative

- Find *F* that maximizes high frequency components of *U* via iteration process.
 - » Makes the image intensity histogram as sharp as possible.

^[2]J.G. Sled, and A.P. Zijdenbos, "A nonparametric method for automatic correction of intensity nonuniformity in MRI data," *IEEE Trans. Med. Imaging*, vol. 17, no. 1, pp. 87-97, 1998

- Histogram-based

- Information minimization
 - Intensity inhomogeneity model: Multiplicative and additive^[3]

$$v(x) = u(x)m(x) + a(x) \xrightarrow{\text{Inverse}} \widetilde{u}(x) = v(x)\widetilde{m}^{-1}(x) + \widetilde{a}^{-1}(x)$$

estimation
$$v(x) : \text{measured image}$$
$$u(x) : \text{true image}$$
$$m(x) : \text{multiplicative component}$$
$$a(x) : \text{additive component}$$
$$\widetilde{a}^{-1}(x) = -\frac{a(x)}{m(x)}$$

- Find $\tilde{m}^{-1}(x)$ and $\tilde{a}^{-1}(x)$ that minimize image entropy $I[\tilde{u}(x)]$.
- $\tilde{m}^{-1}(x)$ and $\tilde{a}^{-1}(x)$ are linear combinations of smoothly varying basis functions (polynomial), respectively.

^[3]B. Likar, M.A. Viergever, and F. Pernus, "Retrospective correction of MR intensity inhomogeneity by information minimization," *IEEE Trans. Med. Imaging*, vol. 20, no. 12, pp. 1398-1410, 2001

- Low frequency DCT coefficients optimization for correcting the intensity inhomogeneity
 - Band-limited bias field
 - The bias field is known to be smoothly varying.
 - Expected to have no spatial high-frequency components.
 - Discrete cosine transform
 - Great energy compaction

MR image of a phantom

 Any meaningful smooth varying field can be described only a few low-frequency coefficients.

Intensity inhomogeneity model

 $v(x) = u(x)f(x) \longrightarrow \widetilde{u}(x) = \frac{v(x)}{f(x)}$

- Multiplicative model

$$v(x)$$
: measured image
 $u(x)$: true image
 $f(x)$: bias field
 $\tilde{u}(x)$: estimated image

• Assumption: Bandwidth of the bias field may be limited.

 \rightarrow Set its frequency coefficients above a certain bandwidth to zero.

$$f(x) \xrightarrow{DCT} F(n) = \begin{cases} \sqrt{N} & n = 0\\ F(n) & 1 \le n \le th\\ 0 & \text{otherwise} \end{cases}$$

where N is total # of pixels in the image.

→ Find optimal DCT coefficient F(n)to minimize the entropy of estimated image $I[\tilde{u}(x)]$.

Objective function

$$E(F(n)) = I[\widetilde{u}(x)] + \lambda C = I\left[\frac{v(x)}{f(x)}\right] + \lambda C$$

where $I[\cdot]$: entropy

- λ : weight parameter of the constraint
- *C*: number of pixels such that $f(x) < \varepsilon$

Optimization method

- Downhill simplex
 - It is known as the robust method when the objective function has many local minima.

- Multi-stage optimization
 - The objective function is non-convex and can have a lot of local minima.
 - To avoid local minima, gradually increase the bandwidth of the estimated bias field via downhill simplex optimization.

Gradual bandwidth increase in the DCT domain

- ROI mask
 - The background dark area can interfere with inhomogeneity correction.
 - The mask is determined via automatic thresholding based on average intensities around four corners of the image.

(a) MR image of a phantom(b) ROI masked image

Experimental results

- Experimental conditions
 - Datasets
 - 2D MR phantom images and clinical images
 - Equipment: 3T MR scanner
 - Dimension: 256 x 256
 - Parameter setting
 - Bandwidth of estimated bias fields
 - $-\xi < 10$, where ξ denotes the radial spatial frequency.
 - Number of parameters (DCT coefficient) to be obtain: 78

Experimental results

• Phantom data

Experimental results

• Clinical data

Korea Advanced Institute of Science and Technology

15/16

Conclusion

- Propose an algorithm for correcting intensity inhomogeneity in MR images by low frequency DCT coefficients optimization.
 - Image entropy based objective function
 - Downhill simplex as the optimization method
 - Multi-stage optimization to avoid local minima
 - ROI mask based on automatic thresholding
- Experiments and qualitative evaluation
 - Two 2D MR phantom images and two 2D abdominal MR images
 - Intensity homogeneity is well restored.
 - Small structures and edges are well preserved.

Thank you for your attention.

Q & A

