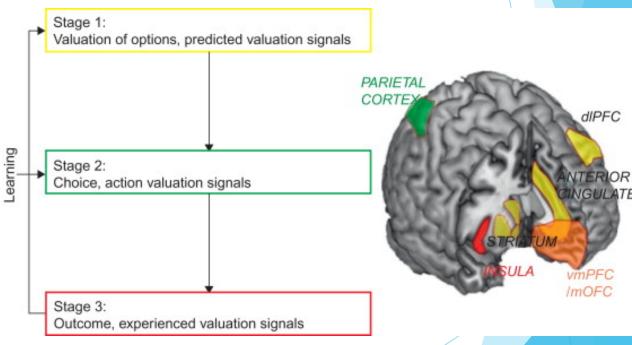
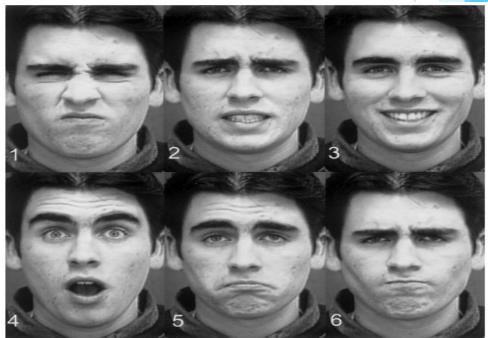
Social reinforcement learning using VR avatar

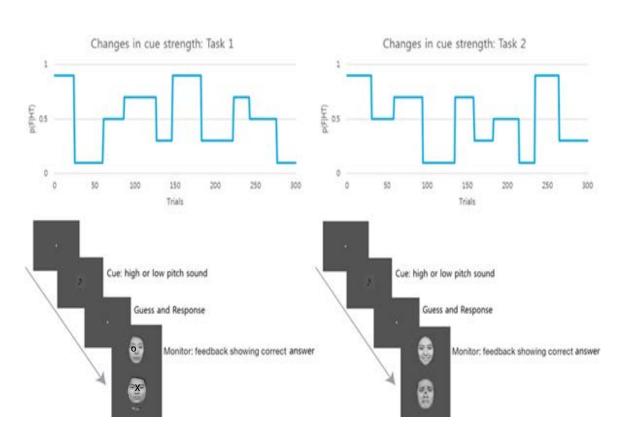

Youngjin Ahn (CGV Lab)

Seokho Yun (CNDL)

Social reinforcement learning

► How does the human learn from social value?




Shared Representations

actions and sensory experiences in synchrony with those they observe in targets

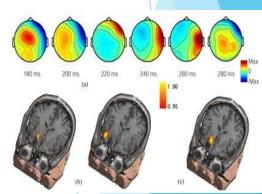
Effect of emotional feedback in our previous study

- Association task between Low/High tone and Male/Female face
- Low or High tone appears and agent select one among two faces which is most likely to be associated with that tone
- Feedback provided with O/X (task 1) or Emotional Face (task2)
- Agent learns about environment through feedback
- Association Probability varies (volatile environment)
- Hypothesis: Emotional feedback would modulate behavioral model (Hierarchical Gaussian filter) parameter
- Result : Hyperparameter of behavioral model didn't varied between two task

Why feedback had no effect?

- Maybe social feedback(smile) was not percieved as social reward
- Task Stimuli
 - ► Simple stimuli
 - fictional
 - Ceiling effect
 - Limited emotional responding

- Real-Life Stimuli
 - Multimodal
 - Visual, semantic, prosodic
 - Dynamic
 - Serially or simultaneously
 - Contextually embedded
 - ▶ Belief or past experience



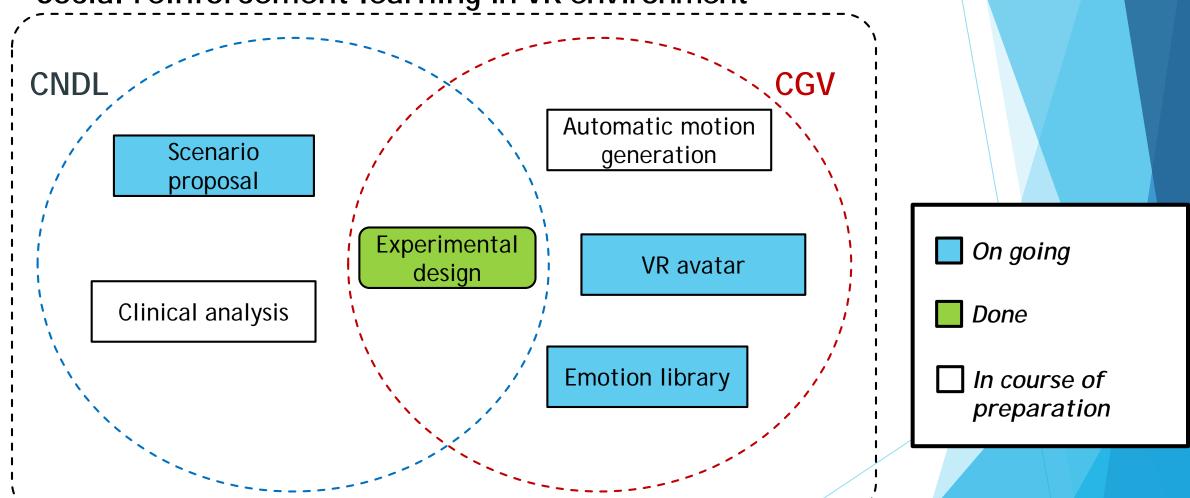
Naturalistic Social Cognition

- capture the complexity of the real social world
 - Virtual Reality is to enhance social reward value
 - Multimodal stimuli
 - Facial expression
 - II. Gesture
 - **III.** Auditory stimulation
- assessing perceivers' abilities to make accurate inferences about targets



Social reinforcement learning

- Objective
 - Create the VR environment for the social reinforcement learning task Natural experimental design
 - Replace "reward" in previous tests in to "social reward (emotional reward)"
 Money/grade to virtual emotion from the avatar
 - Perform an experiment through proposed environment
 Clinical validation and other feedbacks



Social reinforcement learning

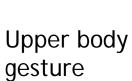
- Expected participants: KAIST students
- Analysis methods
 - Analyze participants' behavior using reinforcement learning model
 - Compare model parameter between monetary reward and social reward
 - Investigate correlation between psychological trait/state with model parameter
 - Separate effect of arousal and valence of social reward on value computation by varying degrees of arousal and valence of avatar

Overview

Social reinforcement learning in VR environment

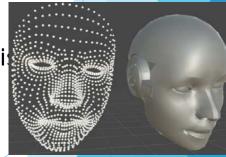
Experiment Environment

zSpace + 3D Glass + (EEG)



VR(HMD) + (EEG)

Avatar Reaction



Facial expression

- Avatar reacts to patient using gesture and facial expression as social reward or puni
- Capture facial expression using Xbox one Kinect
- How to transform gesture according to affection of patient?

Related Works

Laban Movement Analysis(LMA): Body, Space, Shape, Effort, Relationship

Space: attention to the surroundings

Indirect: flexible, meandering, wandering, multi-focus Examples: waving away bugs, slashing through plant growth

Direct: single focus, channeled, undeviating

Examples: pointing to a particular spot, threading a needle

Weight: sense of the impact of one's movement

Light: buoyant, delicate, easily overcoming gravity, marked

by decreasing pressure

Examples: dabbing paint on a canvas, describing the movement

of a feather

Strong: powerful, having an impact, increasing pressure into

the movement

Examples: punching, pushing a heavy object, expressing a

firmly held opinion

Time: lack or sense of urgency

Sustained: lingering, leisurely, indulging in time Examples: stretching to yawn, stroking a pet

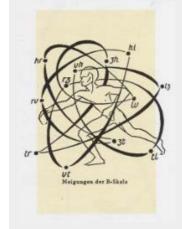
Sudden: hurried, urgent

Examples: swatting a fly, grabbing a child from the path of

danger

Flow: attitude towards bodily tension and control

Free: uncontrolled, abandoned, unable to stop in the


course of the movement

Examples: waving wildly, shaking off water **Bound**: controlled, restrained, able to stop

Examples: moving in slow motion, tai chi, carefully carrying a

cup of hot liquid

Table 1: Motion Factors and Effort Elements

Horizontal

Spreading: affinity with Indirect

Examples: opening arms to embrace, sprawling in a chair

Enclosing: affinity with Direct

Examples: clasping someone in a hug, huddling in the cold

Vertical

Rising: affinity with Light

Examples: reaching for something in a high shelf

Sinking: affinity with Strong

Examples: stamping the floor with indignation

Sagittal

Advancing: affinity with Sustained

Examples: reaching out to shake hands

Retreating: affinity with Sudden Examples: avoiding a punch

Table 2: Shaping Dimensions and Affinities

Laban Effort and Shape analysis of affective hand and arm movements

- Ali-Akbar Samadani, SarahJane Burton. University of Waterloo

Quantify these components based on measurable physical features

Ex) Weight: the maximum of the sum of the kinetic energy of the moving body parts

- Light or Strong

$$E(t_i) = E^{Hand}(t_i) + E^{Arm}(t_i), \text{ where}$$

$$E^{Hand}(t_i) = \sum_{j=Fingers} E^j(t_i)$$

$$E^{Arm}(t_i) = E^{UpperArm}(t_i) + E^{Forearm}(t_i).$$
(1)

$$E^{Forearm}(t_i) = \alpha_{Forearm} v^{Forearm}(t_i)^2, \qquad (2)$$

aForearm: the mass coefficientvForearm(ti): the speed of the forearm at time ti.

So, weight Effort for a movement of length *T is* the maximum energy over time

$$Weight_{Q1} = \max(E(t_i)) \ \forall i \in [0, T]. \tag{3}$$

Ex) Time: weighted sum of the accelerations of the moving body parts

- Sustained or Sudden

The acceleration for the kth body part at time ti is:

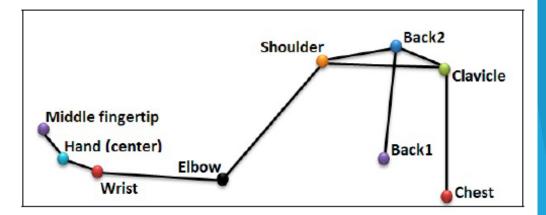
$$a^{k}(t_{i}) = v^{k}(t_{i}) - v^{k}(t_{i-1}).$$
(4)

So, the Time Effort for a movement of length *T* is net acceleration accumulated at the body parts

$$Time_{Q2}^{k} = \sum_{i=2}^{T} \frac{|\mathbf{v}^{k}(t_{i}) - \mathbf{v}^{k}(t_{i-1})|}{t_{i} - t_{i-1}}.$$
 (5)

Laban Effort and Shape analysis of affective hand and arm movements

- Ali-Akbar Samadani, SarahJane Burton. University of Waterloo


Experiment

- Certified movement analyst(CMA) design 6 hand and arm motion paths and they used to convey 6 emotions.
 - A total of 44 movements were conducted
- 2) Annotation questionnaire was designed with CMA where Effort components were rated on 5-point Likert scale
- 3) The correlation between the quantified and CMAannotated Effort components are computed based on the Pearson linear correlation coefficient.

TABLE III. HAND AND ARM MOTION PATHS*

Motion path	Description
A	From Self, right arm down along side to forward mid Level, reaching to take something, palm up palm remains open.
В	Similar motion as A, but in the reverse direction.
С	Right palm open on upper chest, opening and extending right arm fully directly in front of the right shoulder at forward mid- level, with the palm facing left, perpendicular to the floor similar to the hand-shake position.
D	Similar motion as C, but in the reverse direction.
Е	Right arm is extended forward at mid-level with open palm facing down and the hand parallel to the floor. Moving backward ending with the open palm facing forward near the right shoulder.
F During the	Similar motion as E, but in the reverse direction.

^{*} During these movements, the wrist and finger orientations remain constant.

ig. 1. Upper body model used in Laban quantification.

Other researches

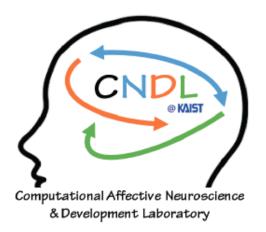
- Other quantification methods
- Ex) For judging 'Space', minimum rectangle bounding box surrounding the body, maximum distance of hand and elbow can be used
- (Bernhardt and Robinson 2007, contraction index, Mancini and Castellano 2007)

- Using Effort & Shape components describe association between personality and body motion (PERFORM: Perceptual Approach for Adding OCEAN Personality to Human Motion using Laban Movement Analysis
 - FUNDA DURUPINAR (University of Pennsylvania), MUBBASIR KAPADIA (Rutgers University) et al.)
- * Diverse combination of Effort components

Research Plan

Subject's Emotions

1. Basic emotions of patient like joy, angry are transferred to avatar



Modified Body gesture

- 2. Original body gesture which strongly express feeling is prepared
- 3. Gestures is selected by input emotion
- 4. Selected gesture is modified through intermediate components and mapped physical properties (adapted to our approach)
- * Gesture can be changed according to emotion level or for other emotion

THANK YOU ©

