SIGMI Meeting ~Image Fusion~

Computer Graphics and Visualization Lab Image System Lab

Introduction

Introduction

Cerebrovascular angiography

- Cerebrovascular angiography
 - A form of angiography which provides images of blood vessels in the brain for interventional procedure
- Example of cerebrovascular angiography

The source of the video: www. Google. com

Cerebrovascular angiography

Cerebrovascular angiography with a 2D roadmap

Cerebrovascular angiography

- Problem definition
 - Patient motion
 - Pre-generated roadmap may be unreliable when the target object is moving.
 - ▶ Need to re-generate the roadmap.
 - □ Re-inject the contrast agent.
 - □ Increase the procedure time (with exposure dose).
 - Catheter insertion in 3D environment
 - D roadmap may be hard to confirm exact location of a inserted catheter.
 - Need to current catheter location exactly in 3D environment.

Challenges

- Robust 3D roadmap generation with real-time catheter tracking for cerebrovascular angiography
 - Goal: Provide 3D roadmap for intervention based on real-time image registration and interactive visualization technique
 - Target data: Simulated X-ray, CT data from phantom
 - Synthetic data for experimental study
 - Simulate a 3D rigid phantom motion (translation and rotation)
 - Simulate catheter movement in 3D virtual environment

Challenges

Robust 3D roadmap generation with real-time catheter tracking for cerebrovascular angiography

Overall flow

Simulate a 3D phantom motion

- Rigid motion (translation and rotation) generation similar to patient motion
- Cerebrovascular extraction from 3D CT
 Semi-automatic segmentation method
- Registration between 2D fluoroscopy and 3D CT
 - Registration including a 3D to 2D projection process
 - Image-voxel based registration
 - Main feature: skull (low intensity and high gradient)

An example of tracking to moving patient

2D projected CT tracking the moving patient (panning)

Registration demonstration

Image voxel-based registration

- Maximize an voxel information (e.g. intensity and entropy) based similarity measure.
 - Sum of squared differences (SSD)

 $\sum [A(i,j) - B(i,j)]^2$ $(i, i) \in R$

A: Target image B: Source image

- Normalized mutual information (NMI)
 - Measure based on the joint entropy

 $Y(A,B) = \frac{H(A) + H(B)}{H(A,B)}$ H(A), H(B): Marginal entropy H(A,B): Joint entropy M(A,B): Mutual information

M(A,B) = H(A) + H(B) - H(A,B)

Y. S. Kim, J. H. Lee, and J. B. Ra, Pattern Recognition, vol. 41, issue 11, pp. 3356-3365, Nov. 2008.

J. H. Lee, Y. S. Kim, D. Lee, D. -G. Kang, and J. B. Ra, IEEE Signal Processing Letters, vol. 17, no. 4, pp. 347-350, Apr. 2010.

Related works

Coert T. Metz et al., IEEE Transaction on Medical Imaging, vol. 32, issue 5, pp. 919-931, Feb. 2013.

Rui Liao et al., Computerized Medical Imaging and Graphics, vol. 37, issue 2, pp. 150-161, Mar. 2013.

Jian Wang et al., in IEEE NSS/MIC, Seoul, Korea, Nov. 2013.

Hua-mei et al., IEEE Transaction on Medical Imaging, vol. 22, issue 9, pp. 1111-1119, Sep. 2003.

Jurgen Weese et al., IEEE Transaction on information Technology in Biomedicine, vol. 1, issue 4, pp. 284-293, Dec. 1997.

Role of CGV

Simulated catheter motion

- Trajectory generation
- \rightarrow 3D position approximation

Interactive visualization

- Catheter visualization based on 3D roadmap model
- Visual guidance related to catheter movement
- Context-based view generation

Catheter tracking techniques

- Catheter tracking
 - > 3D roadmap
 - Generated from 3D rotational angiogram
 - Real-time registration
 - Between 2D fluoroscopy and 3D roadm
 - Static 3D roadmap

Overlay 3D road map to 2D fluoroscopy containing catheter motion

Multimodal angiographic assessment of cerebral arteriovenous malformations: a pilot study Neuroimaging, Jun 2015

3D roadmap in neuro-angiography: technique and clinical interest Neuroradiology, Oct 2005

Philips Healthcare - Imagens 3D RoadMap com (2009)

Catheter tracking techniques

Toward True 3D Visualization of Active Catheters Using Compressed Sensing Magnetic resonance in medicine, Jun 2009

Issues in catheter tracking

Objective

 Provide robust visual information (roadmap) during the catheter operation

Placement issue

 Calculate true 3D position of catheter based on 2D position on fluoroscopy

Visualization issue

- Provide real-time visualization due to changes in fluoroscopy
- Provide visual guidance during the catheter insertion process

Issues in catheter tracking

Placement issue

Catheter getting out of provided 3D roadmap

- Caused by registration
- Caused by solid model

Issues in catheter tracking

Visualization issue

Manual view modification due to occlusion problem

3D catheter visualization model

 Tip-information based 3D catheter motion generation

Synthetic X-ray data	3D roadmap from CT
Tip location	3D catheter skeleton
	Simulated motion
	Trajectory approximation
Registration	Collision detection

Provide virtual motion of catheter based on 3D roadmap and 2D positive

Comprehensive visualization

- Comprehensive medical visualization
 - Dense clinical data + real-time imaging
 - Utilize two or more types of medical data together

Objectives

- Provide sufficient spatial perception of the anatomy of interest
- Maintain information from rich pre-operative scan
- Provide additional information from the real-time image displayed embedded within the volume

Comprehensive visualization

Related work

4D US + 3D CT

Provide automatic ROI based on location of US image in unified virtual environment

Feature Emphasis and Contextual Cutaways for Multimodal Medical Visualization Eurographics / IEEE VGTC Symposium on Visualization 2007, May 2007

Visualization in catheter tracking

Context-based view generation

- Based on situation during the simulated catheter motion
- Avoid overlapped view
- To provide clear representation of the roadmap structure
- Informative visualization
 - Emphasize significant region/direction to provide visual guidance according to the catheter motion

Thank you 😳