Applications of CT and MR

KAIST Research Group of Future Emerging Technology on Medical Imaging

March 2014

CNI & CGV

Cognitive Neuroscience and Neuroimaging

CT Imaging

- Using the principle of X-ray imaging, CT scan forms several slices to construct 3D image
- CT scans can show
 - Bones tissues
 - Muscles
 - Blood vessels

CT Imaging - pros

- Widely available: can show many parts listed before
- Quick procedure: around 30 seconds
- Cheap: KRW 50,000 ~ 100,000 (medical insurance available!)
- Has strong point on angiography and bone imaging

CT Imaging - cons

- Radiation dose
 - 0.001mSv (X-ray Extremity) to 25mSv (PET/CT)
- Allergic reaction to contrast material
- Metal artifacts

CT Imaging

- How can we use these principles in better way?
 - Weight-bearing CT
 - Dual Energy CT

- Normal CT scans
 - Supine position

- Lower extremities
 - Most of the "weight-bearing" joints are placed
 - Weight-bearing situation
 - Bone shape does not change
 - Cartilages are compressed
 - Overall pose changes

- Foot-ankle CT
 - Foot-ankle joint: has very complex structure

Supine CT

Standing X-ray

- CT scan in standing position
 - simple, but effective idea
 - no additional radiation dose
 - has many clinical applications

• Knee

Supine CT

Weight-bearing CT

Ankle

Supine CT

• Lisfranc joint

Supine CT

- Limitations
 - Instrument is expensive
 - Some patients can't even stand

Weight-bearing CT in CS

WBCT			
\rightarrow Good for Lower Extremities \rightarrow Expensive	Supine CT		
	→ Cheap → Cannot show standing position correctly	Standing X-ray	
		 → Cheap → Can show standing position → Does not include depth information 	

Weight-bearing CT in CS

supine CT 영상자료

Simulates 3D WBCT

Weight-bearing CT in CS

CT 3D modelling 자료

- Measurement
 - Bone angle
 - Distance
 - etc
- Diagnosis

Better to deal with SW

Dual Energy CT

• Dual Energy Computed Tomography (DECT)

• Exploit different mass attenuation coefficients of different materials as a function of energy

• Take 2 CT images at once

- With additional tissue parameters
- Not spectroscopic features

Dual Energy CT

 Mass attenuation coefficients: Coefficients as a function of energy

Energy	Mass attenuation coefficient				
keV	cm^2/g				
	Water	Calcium	Iodine		
30	0.371	3.971	8.45		
40	0.267	1.804	22.10		
60	0.205	0.651	7.55		
80	0.183	0.361	3.49		
100	0.171	0.254	1.94		
150	0.150	0.167	0.71		

Dual Energy CT – basics

- Energy subtraction
 - A weighted subtraction of images taken at two different energies
- Basic material decomposition
 - Decomposition of the measured data or images into contributions due to the two so-called "basis materials"

Dual Energy CT – pipeline

Dual Energy CT – History

- 1970s: Two separate scans
- 1980s: Rapid kV-switching
- 1990s: Novel detectors
- 2000s: Dual source CT
- 2010s: Spectral CT

Dual Energy CT – applications

Direct Bone Removal

©Siemens

Dual Energy CT – applications

 Distinguish different kinds of tissues automatically

©Siemens

Dual Energy CT in CS

Low Energy CT

High Energy CT

Dual Energy CT in CS

Dual Energy CT in CS

Figure 1A. A GSI iodine map depicts a wedge-shaped perfusion defect in the 9th segment of the left lung.

Figure 1B. A small embolus inside the corresponding segmental branch of the left pulmonary artery can be seen with GSI.

Tissue characterization for diagnosis

CT Imaging

• Brain imaging?

brain CT – good for checking cerebral hemorrhage but some other thing could do better in most cases

Brain Imaging Modalities

Brain Imaging Modalities

MRI – pros

- Good resolution of brain anatomic structure
- Contrast manipulation between different soft tissues
 - X-Ray and CT cannot
- No exposure to ionizing radiations

MRI – cons

- Increased complexity
- Expensive
- Long scan times
 - Uncomfortable for patients
 - Susceptible to patient motion

Principles of MRI

Protons placed in a B field

- Signal strengths are modified
 - properties of microenvironment
 - the local inhomogeneity of the B field

Principles of MRI

 MR signal can be "weighted" to accentuate some properties

Structural MRI Techniques

• Images with different contrast are used for different (clinical) purpose

What is fMRI?

• Images of brain "activity" changing over time

Applications of fMRI

A Motor activation

B Visual activation

Applications of fMRI

Applications of fMRI

Blood Oxygen Level Dependent (BOLD) signal

DeoxyHb decreases the MR signal

Principle of fMRI

Task

- Disambiguate task-dependent patterns of neuronal activity
- Active brain regions are different in different tasks

- Block design
 - Block stimulate(series of similar stimulus)
- Event-related design
 - Single stimulus

- Block design
 - Can detect general brain region across the particular block stimulus
 - simple to implement
- Event-related design
 - Can detect dynamic responses to varied stimulus categories
 - Also get temporal characteristics of responses

Resting State Networks

Resting State Networks

- A record of previous use
- Organize / coordinate neuronal activity

The Brain Structure

- CGV_MRI
 - Magnetic Resonance Imaging
- Ventricular System
- Volumetric Enlargement
- 3D Shape Modeling

- CNI_DTI
 - Diffusion Tensor Imaging
- Fiber tracts
- Fractional Anisotropy
- Graph Theory

만든 사람들 CGV 연구실 김태호 류호진 김의태

CNI 연구실 이재현 정진용 임이삭

Thank you & See you in July!

